Sharif University of Technology

Computer Engineering Department

Master's Thesis Defense

Evaluation of Explainability Methods for Breast Cancer Histopathological Image Classification.

Pardis Afshar

Supervisors:

Prof. Emad Fatemizadeh Prof. Mohammad Hossein Rohban

Examiners:

Prof. Mahdieh Soleymani Baghshah Prof. Hoda Mohammadzade

Overview

- Introduction
- Related Works
- Challenges
- **Proposed Methodology**
- Results
- Conclusion

Breast Cancer

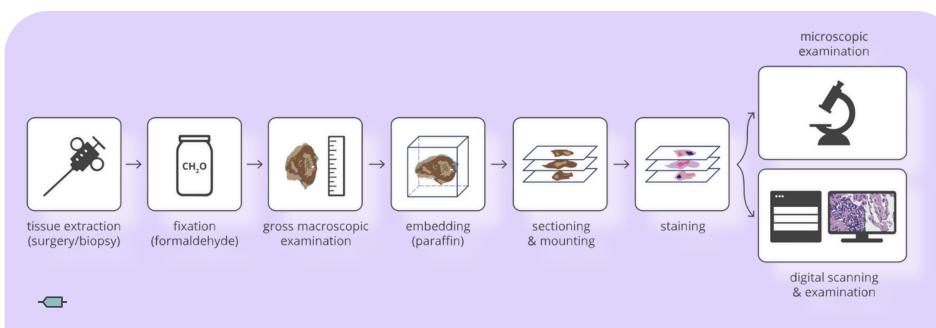
Introduction 🔻

• Breast Cancer:

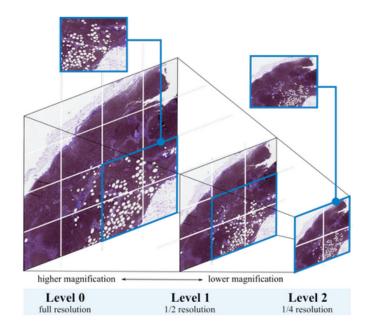
- One of the most common types of cancer among women
- Difficult to diagnose
- Requires early detection

Diagnostic Methods:

- Mammography
- MRI (Magnetic Resonance Imaging)
- Ultrasound
- Biopsy



The tissue preparation process in pathology includes fixation, tissue processing, and staining. These steps are performed for examining samples under a microscope or scanning and digitizing them for further analysis.



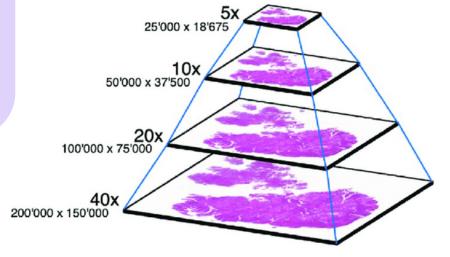
Challenges:

1. Gigapixel Image Sizes

3. Error-Prone Evaluations

4. Pathologist Fatigue

AI (Machine/Deep Learning)



• Key Characteristics for Gaining the Trust of Doctors and Specialists in an AI Model:

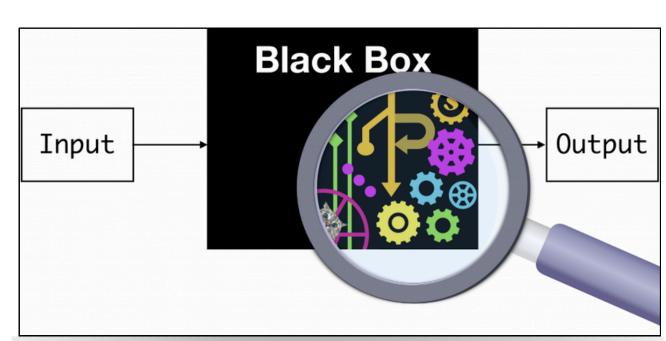
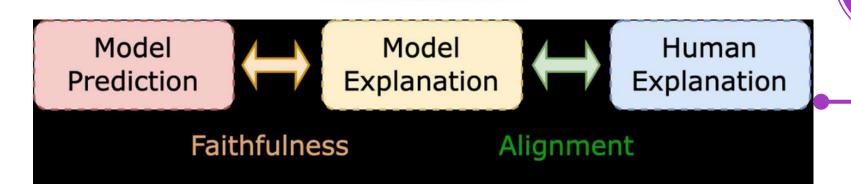
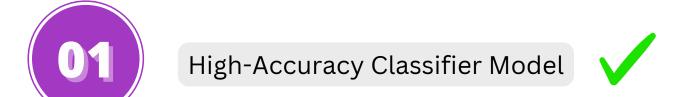


Figure 1: Schematic illustration of the black-box nature of AI models







provided by methods like XAI will be more aligned with the actual decision-making process of the model.

Evaluation of Explanations Generated by XAI Methods

"Explanations must faithfully reflect the model's predictions and <u>align with human reasoning</u>."

Classification of Breast Cancer . Histopathological Images

Related Works

Binary Class

- VGG-16
- ResNet-50

• Multi Class

- VGG-16
- ResNet-50
- InceptionNet

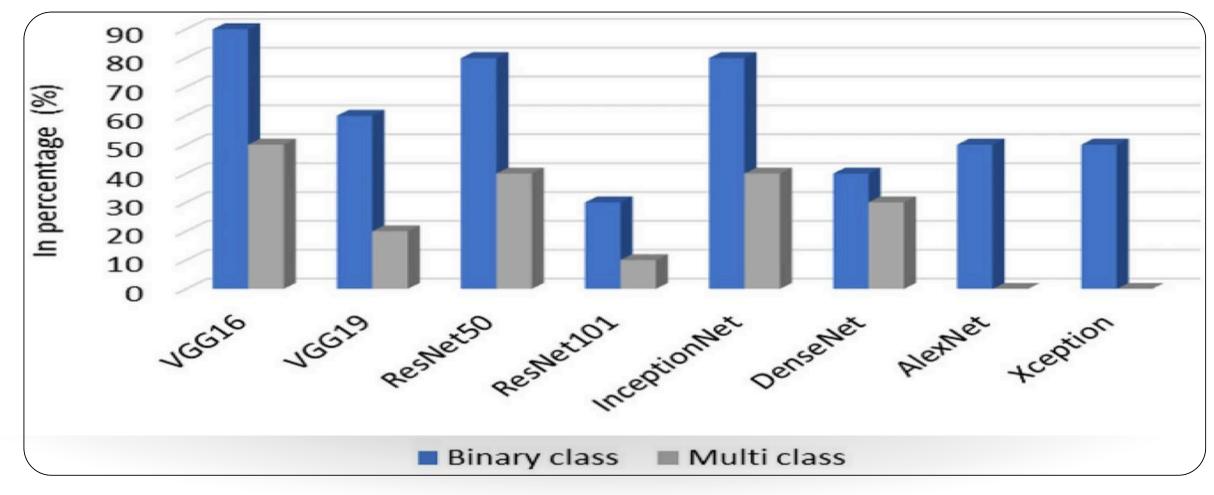


Figure 2: Various CNN Architectures for Binary and Multi-Class Classification, Specifically for Breast Cancer Histopathological Images

Explainable Artificial Intelligence

Related Works

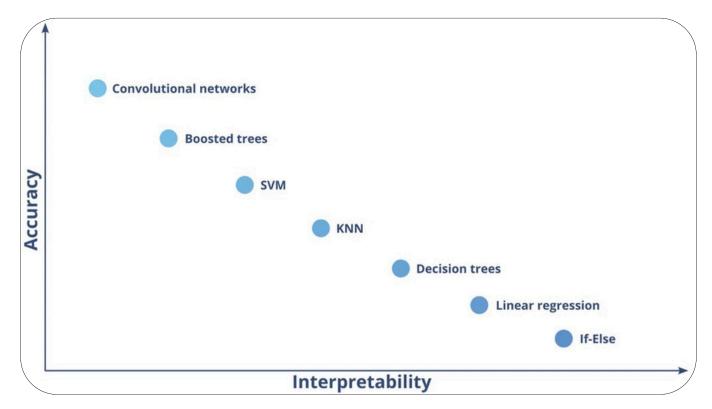


Figure 3: The Relationship Between Accuracy, Complexity, and Interpretability of Models

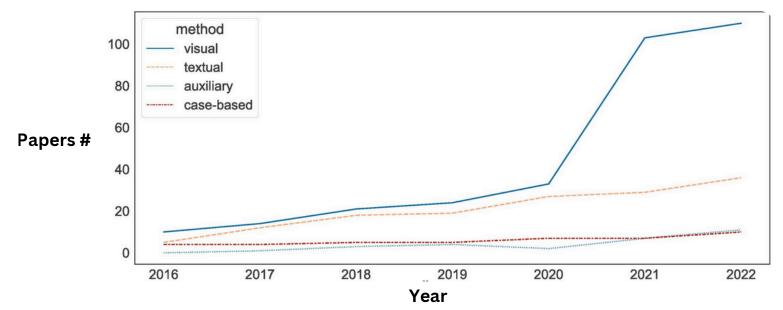


Figure 4: Number of Published Articles on XAI in Medical Image Analysis and from 2016 to 2022

• Scope:

- > 1. Local: Explains individual predictions.
 - 2. Global: Explains the overall model behavior.

• Model:

- 1. Model-Based: Models with built-in explainability, easy to interpret (e.g., decision trees).
- 2. Post hoc: Methods applied after model construction, treating it as a black-box (e.g., DNN).

• Types of XAI Methods:

- ► 1. Visual Explanations
 - 2. Textual Explanations
 - 3. Case-based Explanations
 - 4. Auxiliary Explanations

Visual Explanations

Related Works

Class Activation Mapping (CAM) [1]:

$$F_k = \sum_{x,y} f_k(x,y)$$

$$S_c = \sum_k w_k^c F_k$$

$$M_c(x,y) = \sum_{k=1}^n w_k^c \cdot f_k(x,y)$$

• Grad-CAM [2]:

$$lpha_k^c = rac{1}{Z} \sum_i \sum_j rac{\partial y_c}{\partial A_{ij}^k}$$

$$ReLU(x) = \max(0, x)$$

$$L_{Grad-CAM}^{c}=ReLU\left(\sum_{k}lpha_{k}^{c}A^{k}
ight)$$

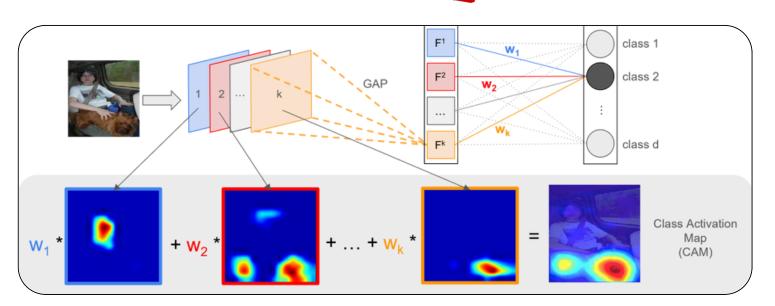


Figure 5: Class Activation Mapping (CAM) method

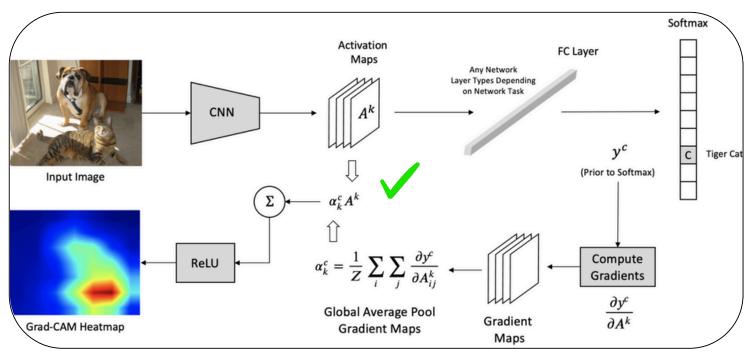


Figure 6: Gradient-weighted Class Activation Mapping (Grad-CAM) method

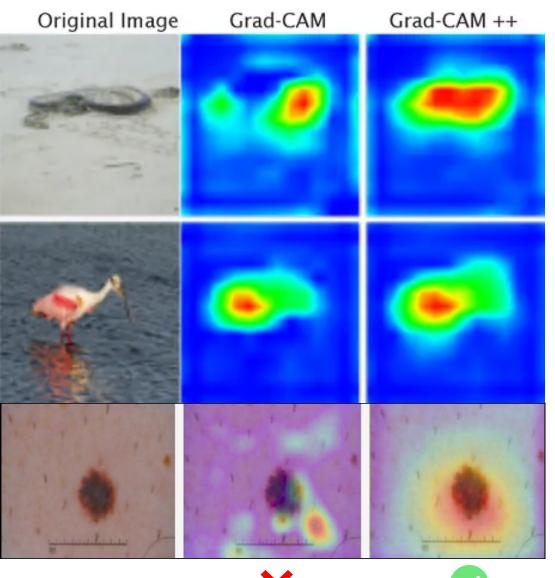
Visual Explanations -

Related Works

CAM-Based Methods:

- 1. Grad-CAM
- 2. Grad-CAM++
- 3.XGrad-CAM
- 4. Ablation-CAM
- 5. FullGrad
- 6.Score-CAM
- 7. Eigen-CAM
- Which XAI method provides better <u>explanation</u> by <u>highlighting</u> key regions in images?

Better localization of objects



XAI methods can be considered weakly supervised localization techniques in certain contexts.

Explainable AI (XAI) Evaluation

Related Works

• Explainable AI (XAI) Evaluation:

1. Human-Based

2. Computational/AI-Based Evaluation

Human-Based Evaluation Requires <u>Experts</u>,
Who Are Not Always Accessible, and
<u>Ground Truth</u>, Which Is Often Unavailable
in Many Cases.

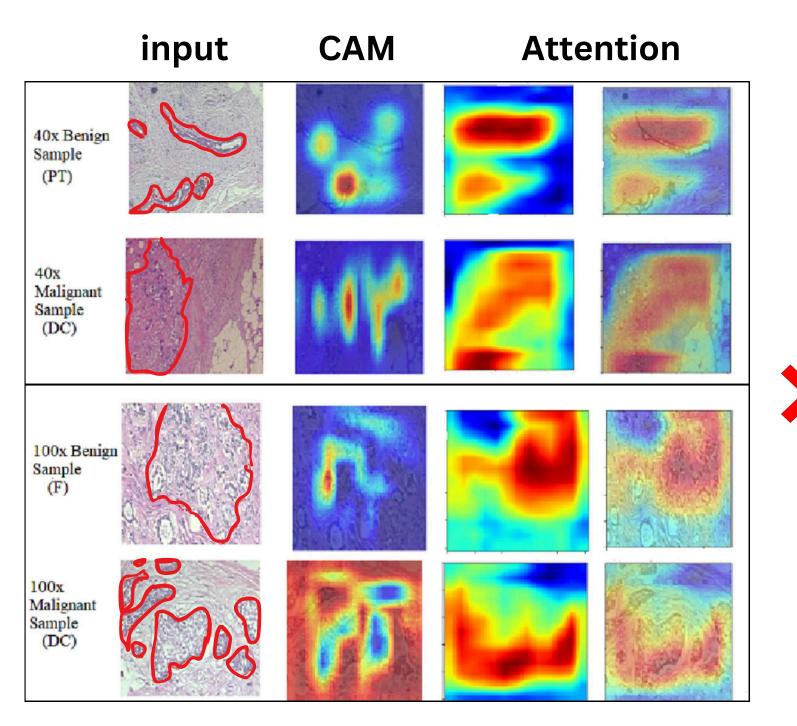


Figure 7: A Comparison of the Generated Heatmap [3]

Explainable AI (XAI) Evaluation

Related Works

• Deletion Metric [4]:

▶ 1. Most Relevant First

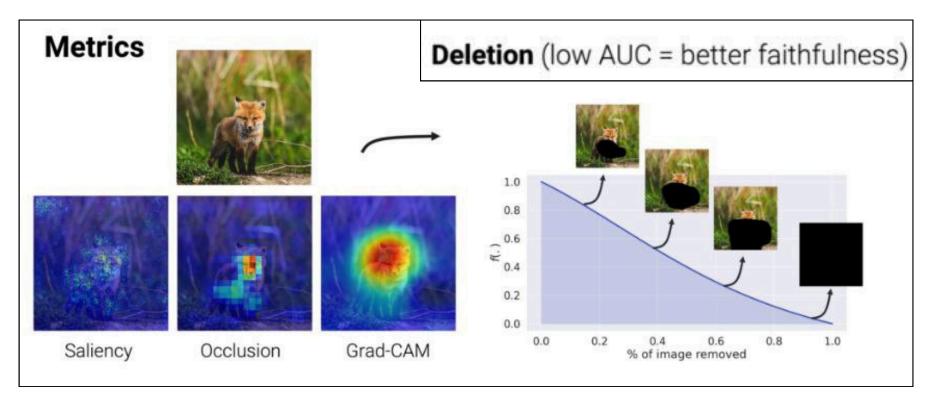


Figure 8: Deletion steps.

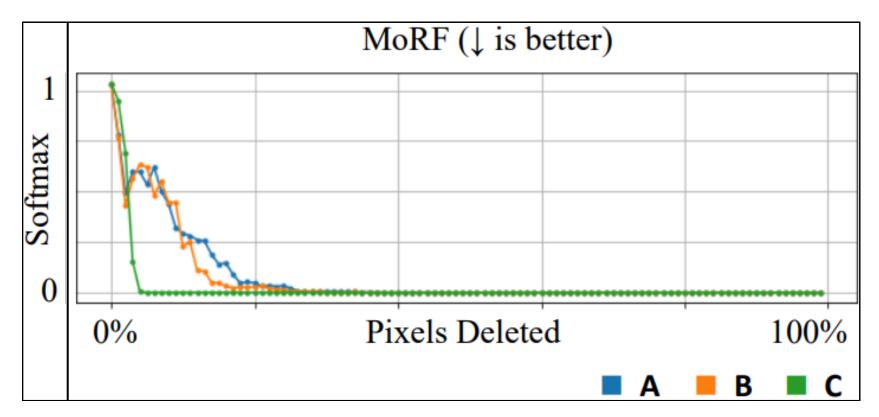


Figure 9: Comparison of the Impact of Feature Removal in Methods A, B, and C Using MoRF.

Occlusion Strategies:

1. Blackening [5]: $I' = I \odot (1 - M)$

2. Blurring [6]:
$$I' = I \odot (1 - M) + (I * G) \odot M$$

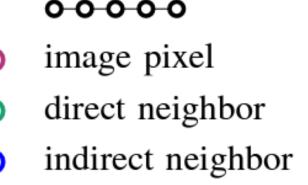
3. Mean [5]:
$$I' = I \odot (1 - M) + \mu \odot M$$

4. Histogram [7]:
$$I' = I \odot (1-M) + H \odot M$$

5. Noisy Linear Imputation [8]:

$$x'=(1-M)\odot x+M\odot (X\hat{eta}+\epsilon), \hat{eta}=rac{1}{6},rac{1}{12}$$

$$M = egin{bmatrix} 1 & 0 & 0 & 1 & \dots & 1 \ 0 & 1 & 1 & 0 & \dots & 0 \ 1 & 1 & 0 & 1 & \dots & 1 \ 0 & 1 & 1 & 0 & \dots & 1 \end{bmatrix}$$



Challenges

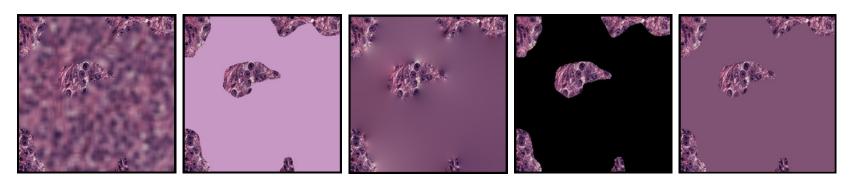
Challenges

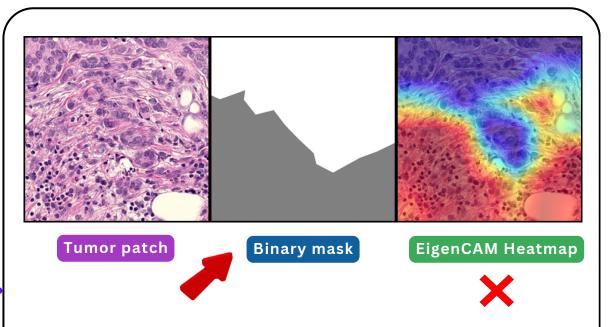
Challenges of Occlusion Strategies:

- Key Issues with Artificial Modifications:
- 1. **Unrealistic Changes:** May generate OoD samples or artifacts on images.
- 2. **Incorrect Evaluation:** Removing unimportant features can mislead model performance.
- 3. **Medical Sensitivity:** Hinders detection of critical features, impacting diagnosis.
- 4. **Risk of Misdiagnosis:** Errors in feature evaluation may lead to diagnostic mistakes.

"Evaluation of XAI methods through Deletion metric is highly dependent on how the features are removed."

Trade-off between deleting the feature and preserving the distribution.





Tumor probabilities - EigenCAM - Blackening:

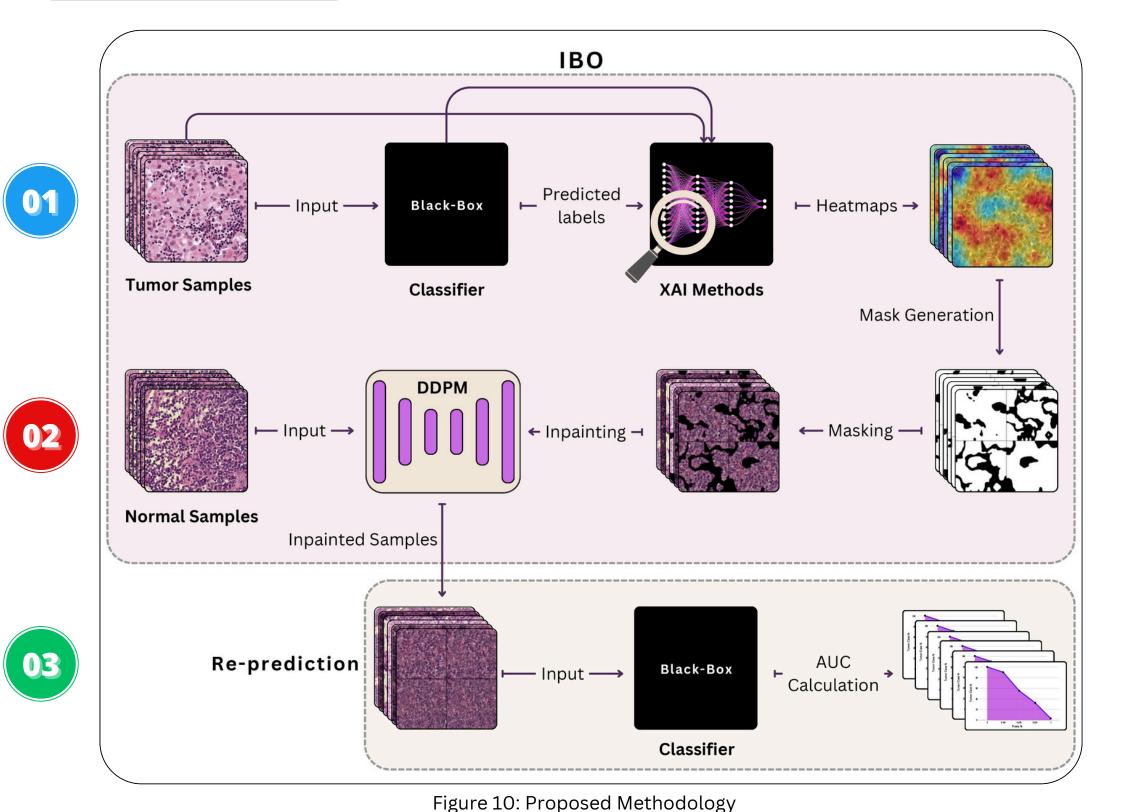
[0.99989, 0.438763]

Tumor probabilities - EigenCAM - Blur :

[0.99989, 0.90]

Proposed Methodology

Methodology



• Steps:

- 1. Training a Classifier
- 2. Generating Heatmaps (Using CAM-Based Methods in This Study)
- 3. Generating Masks Based on Heatmaps
- 4. Image Inpainting
- 5. Re-prediction
- 6. AUC Calculation and Analysis

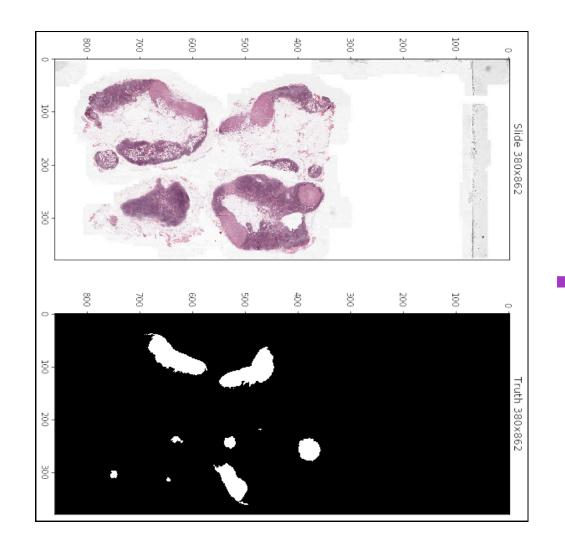
Datasets

Materials

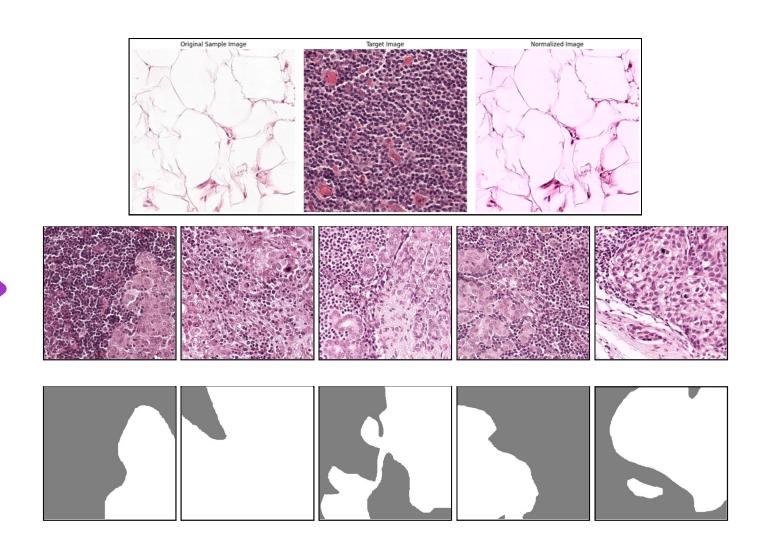
- CAMELYON16 [10]

 400 WSI image of Sentinel Lymph Rodos. Le classes.

 270 images with precise annotations by pathologists and specialists.



"Normal Staining and 512x512 Patching Applied"



• In this step, a total of <u>15,214</u> samples were extracted for each of the tumor and healthy/normal classes.

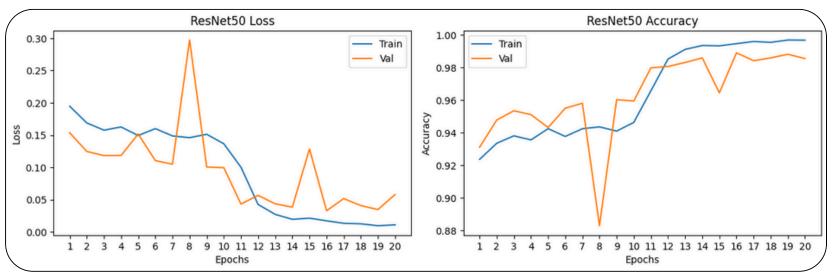
• Training VGG16 and ResNet50 for 20 Epochs: ResNet50 Accuracy 98.62%, VGG16 Accuracy 96.43%.

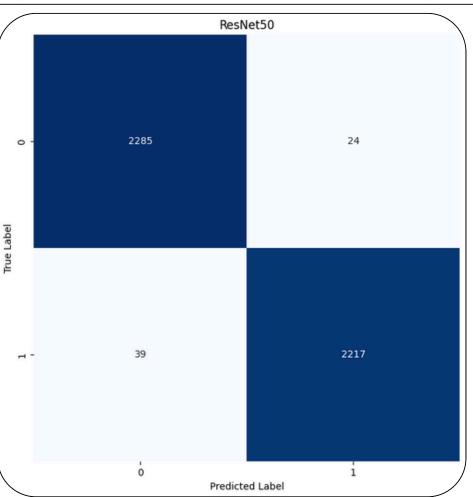
ResNet50 Was Selected for Further Work.

- batch_size_train = 32
- optimizer = Adam
- Learning rate = 0.0001
- Total dataset length: 30428 (.7, .15, .15)
- Train dataset length: 21299
- Validation dataset length: 4564
- Test dataset length: 4565
- Kaggle Platfrom T4 x 2

Classification Report:

	precision	recall	f1-score
0 1	0.9832 0.9893	0.9896 0.9827	0.9864 0.9860
accuracy			0.9862



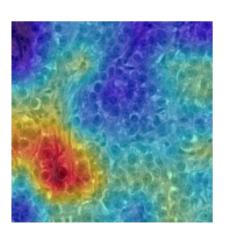


Generating Heatmaps

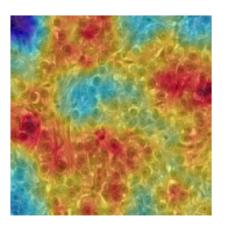
XAI methods

• 7 CAM-Based Methods Were Selected and Applied to Tumor Patches.

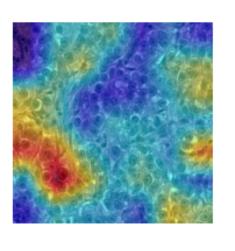
- 1. Grad-CAM
- 2. Grad-CAM++
- 3.XGrad-CAM
- 4. Ablation-CAM
- 5. FullGrad
- 6.Score-CAM
- 7. Eigen-CAM



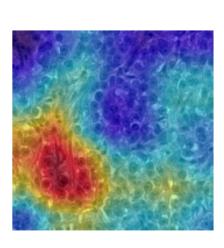
 ${\bf Ablation\text{-}CAM}$



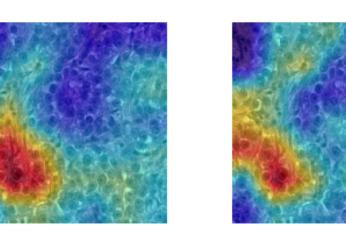
Full-Grad



XGrad-CAM

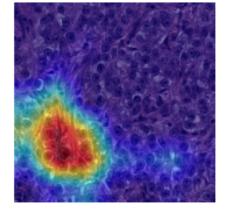


Score-CAM



Grad-CAM++

Grad-CAM



Eigen-CAM

Generating Masks Based on Heatmaps

Masks

• K-means Clustering Based on Pixel Intensity Was Used for Mask Generation.

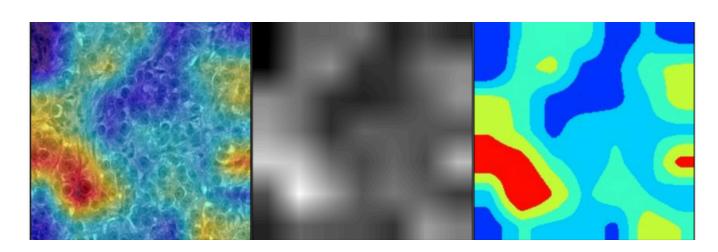


Figure 11: Comparison of Generated Heatmap, Grayscale Heatmap, and Importance Levels

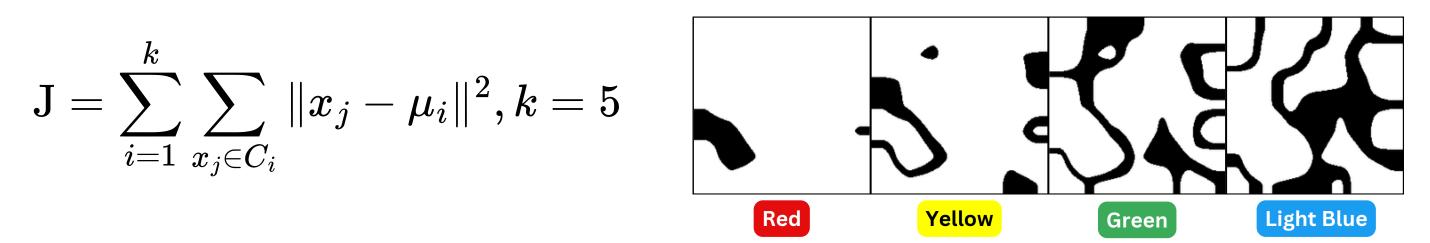
Red Areas: Most important for model decision-making

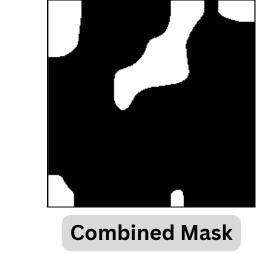
Cellow Areas: Highly important

Green Areas: Moderately important

Light Blue Areas: Less important

Blue Areas: Least important, removed during inpainting process



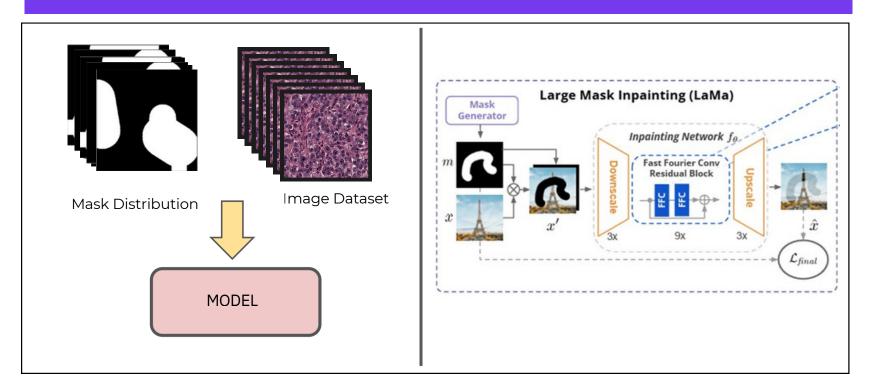


- The Black Areas indicate the regions that need to be inpainted.
- 4 Inpatinting Steps.

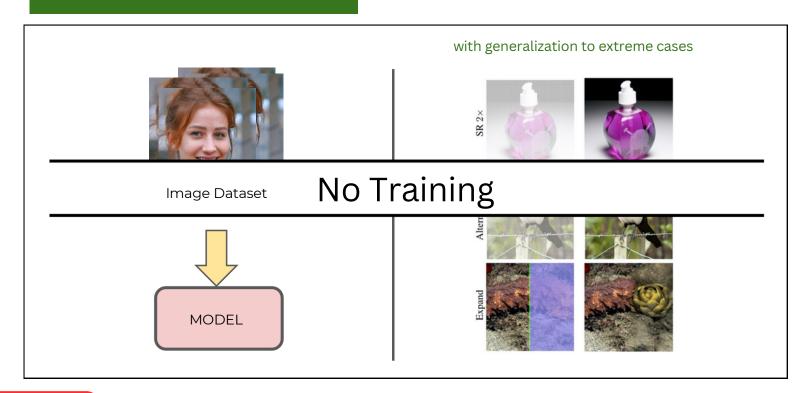
Inpainting

Inpainting

• Existing approaches train with a given mask distribution



• <u>Repaint (2022) [11]</u>



Preliminary: DDPM

Forward process (rewritten using independence property of noise added at each step)

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I}) \longrightarrow q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})$$

Reverse process $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$ Neural network predicts

Algorithm 1 Training

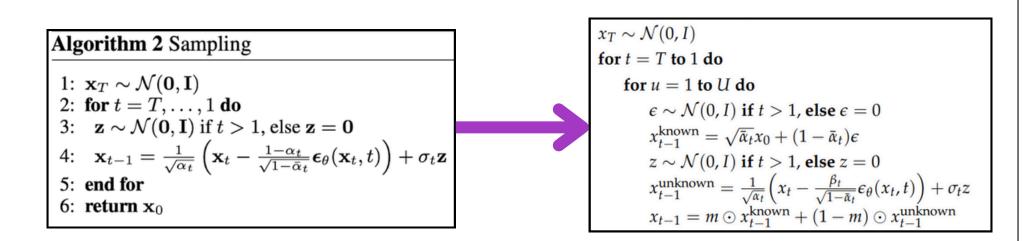
- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{lpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0



Known and Unknown

$$x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1-m) \odot x_{t-1}^{\text{unknown}}$$

Known is obtained from Forward Process

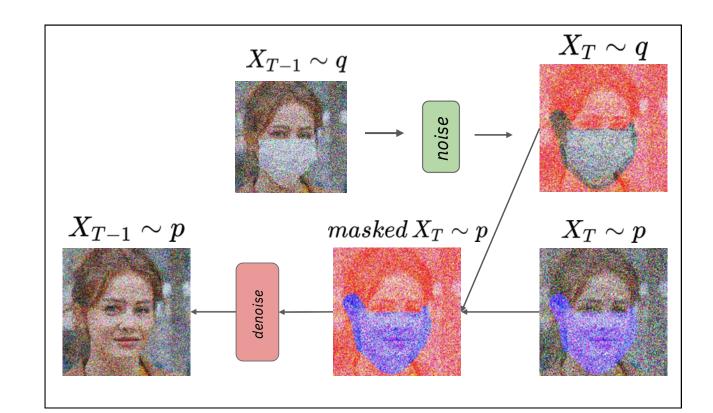
$$x_{t-1}^{\text{known}} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})$$

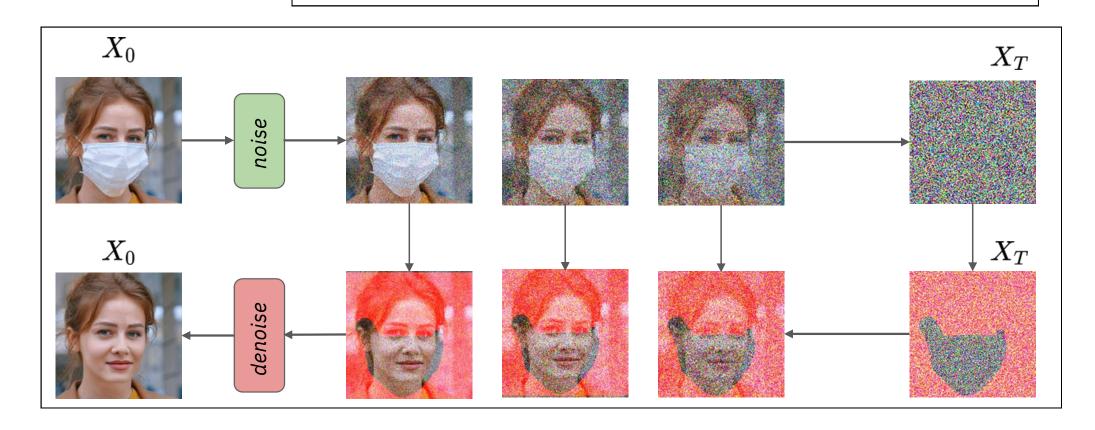
Unknown is obtained from the denoise process

$$x_{t-1}^{\text{unknown}} \sim \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

red = known area

blue = unknown area

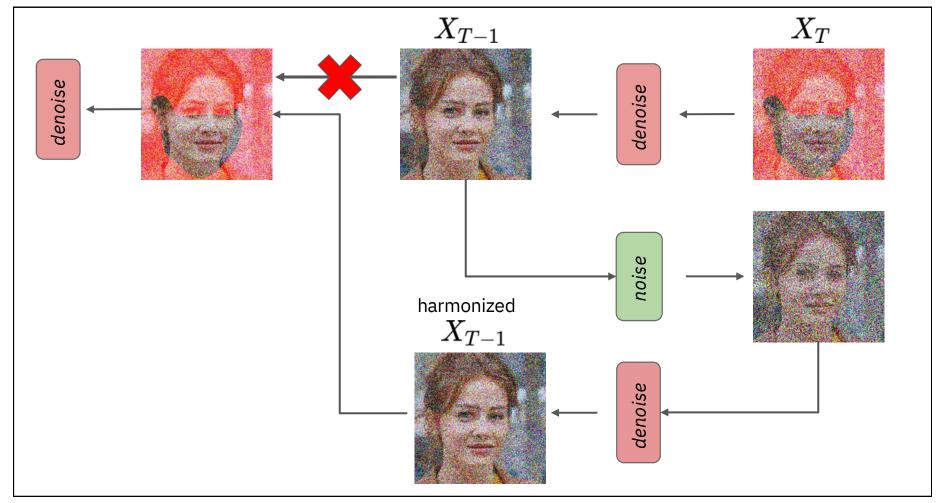




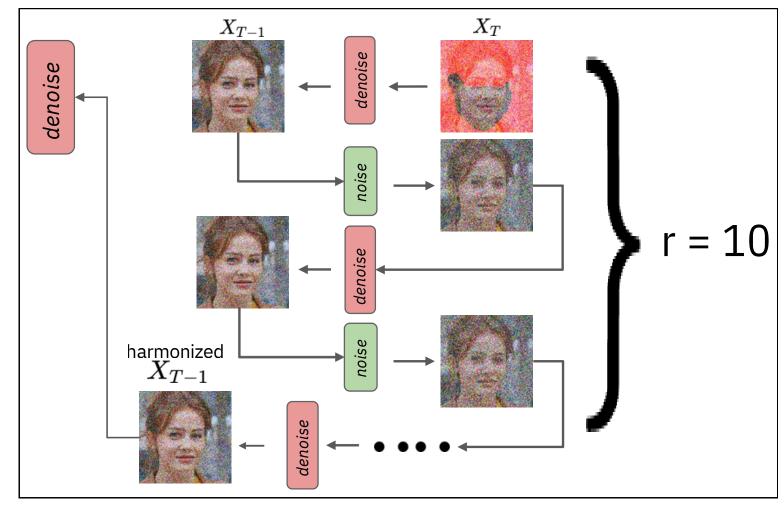
The main issue is when sample the original noise (red), it has no information about the generated part (non-red).

Solution: Repeat the noising and de-noising steps during inference

Resampling



Resampling (r = 1)



Resampling with more steps (r = 10)

Jumping

•Reason:

OResampling at every step would make the image blur.

•Only do resampling every j time.

OFor example, when j = 10 and T = 250, only do resampling when t = 240, 230, 220, 210..., and the length of resampling would be 10.

Resampling with jump length (j = 10)

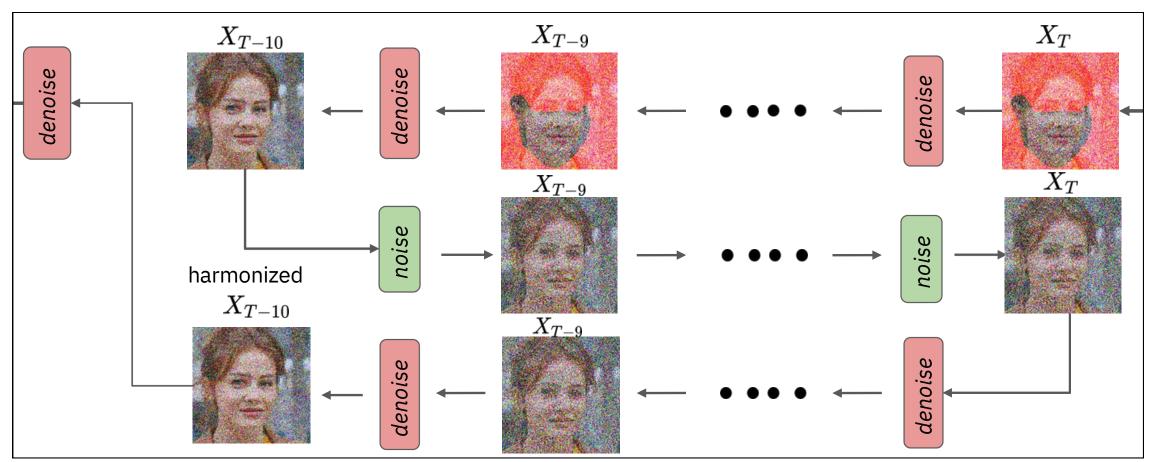
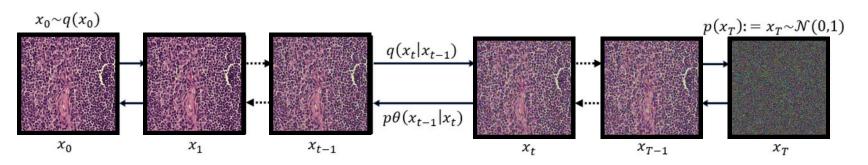


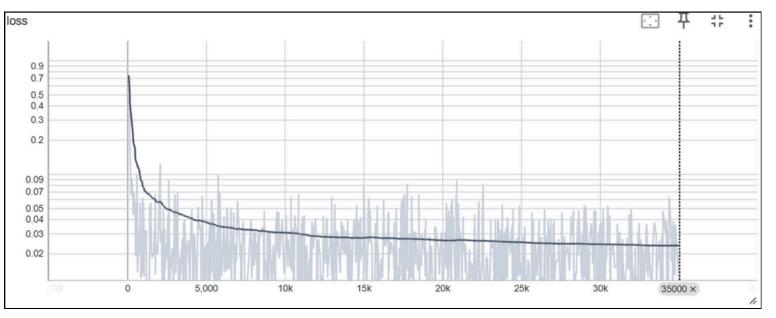
Image Inpainting

Inpainting **Approach**

Training DDPM on Normal Samples:

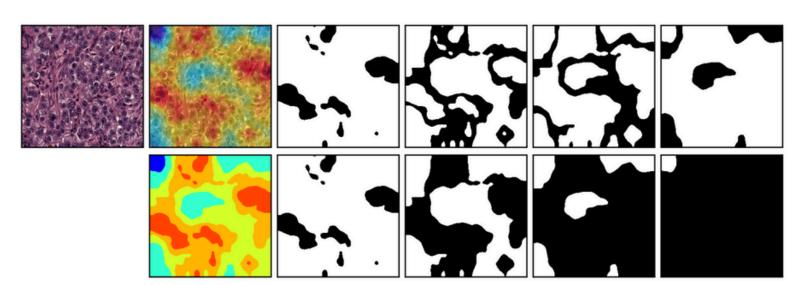


- 35000 steps.
- A100, (Colab Pro+)
- Image Size = 224 x 224
- layers_per_block = 2
- Linear variance scheduler
- batch size = 16
 - optimizer = AdamW
 - Learning rate = 0.0001
 - Number channels = 128, 256, 512
- β in the range [0.0001, 0.02] and set the total timesteps T = 1000



DDPM loss.

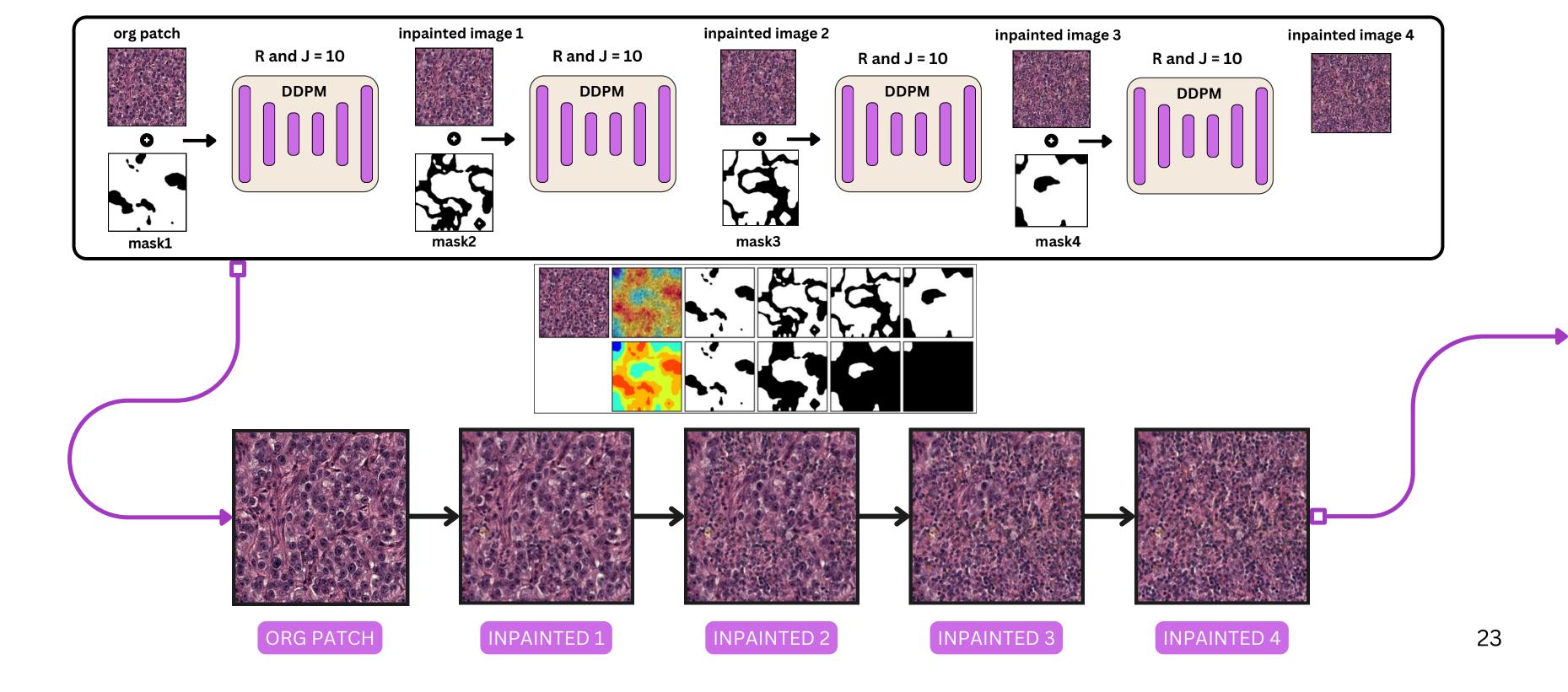
Inpainting Steps: In 4 Steps



The first row highlights regions with varying importance, while the second row illustrates progressive occlusion based on these regions' significance.

Inpainting Approach

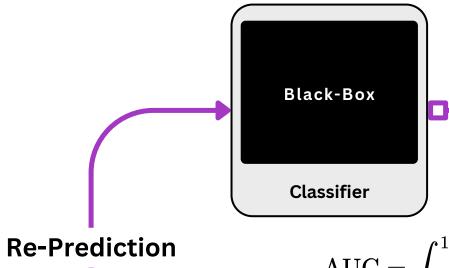
Inpainting Approach



AUC Calculation

AUC Calculation -

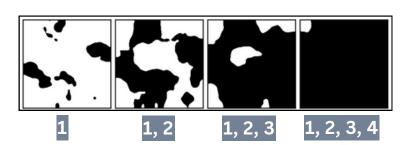
AUC

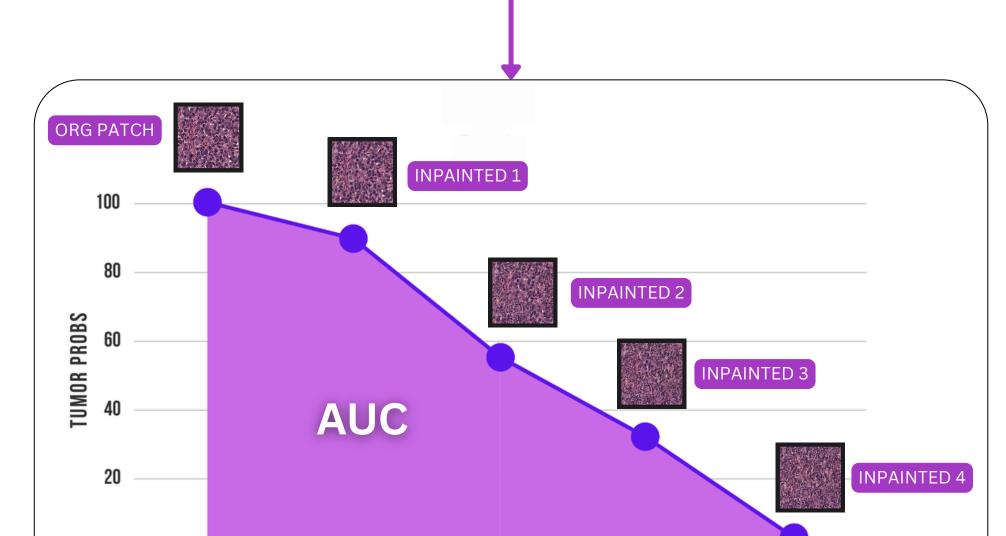


$$\mathrm{AUC} = \int_0^1 f(p)\,dp$$

$$ext{AUC} = \sum_{i=1}^{M-1} rac{f(p_i) + f(p_{i+1})}{2} \cdot (p_{i+1} - p_i)$$

 $p_i = rac{ ext{Number of important pixels removed in step } i}{ ext{Total number of important pixels}}$





0.56

% OF REMOVAL PIXELS

0.87

0.34

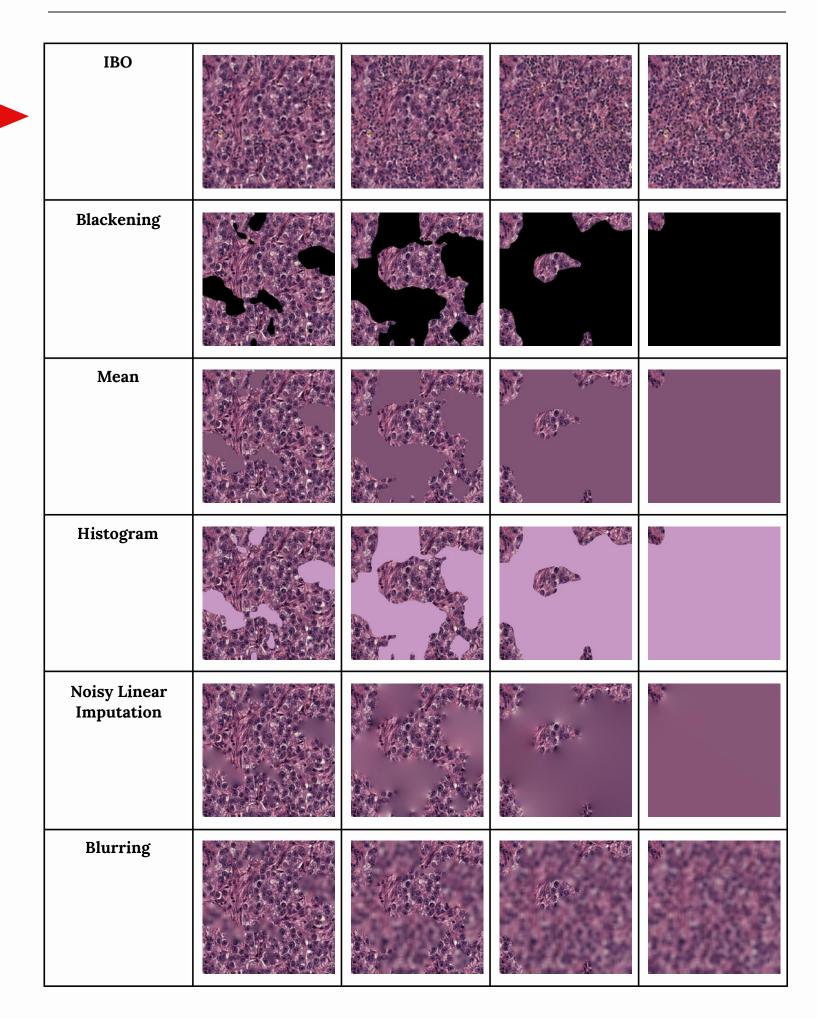
- 1. For evaluating our framework and other methods, 100 random tumor patches were selected from the test set.
- 2. Seven XAI methods were applied to the patches.
- 3. Corresponding masks were generated for all patches and all XAI methods.
- 4. Previous occlusion methods were applied to the patches for each XAI method.
- 5. Our proposed method was also applied. (Inpainting Based Occlusion (IBO))

3 × A100 GPUs (Colab Pro+) were used, with each inpainting taking between 1 to 1.5 minutes.

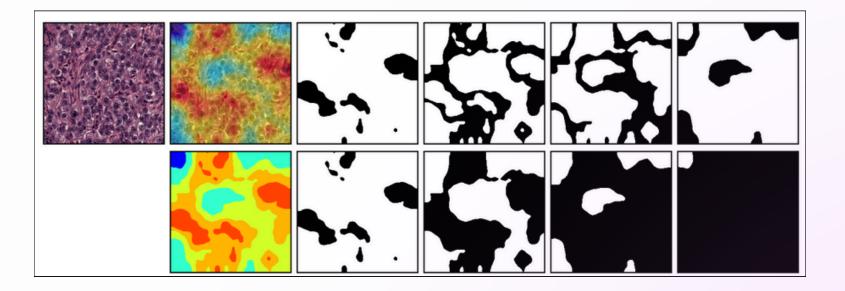
Evaluation of Inpainted/Occluded Samples

Quantitative Evaluation

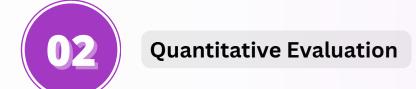
Occlusion Strategy Mask₁ Mask₂ Mask₃ Mask₄



- Illustration of various occlusion strategies applied to masked patches.
 - 100 x 4 x 6 x 7 Occluded Images.



Evaluation of Inpainted/Occluded Samples

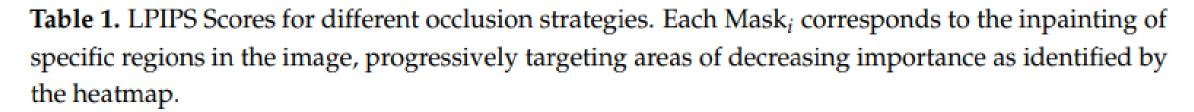


Evaluation of Inpainted Samples

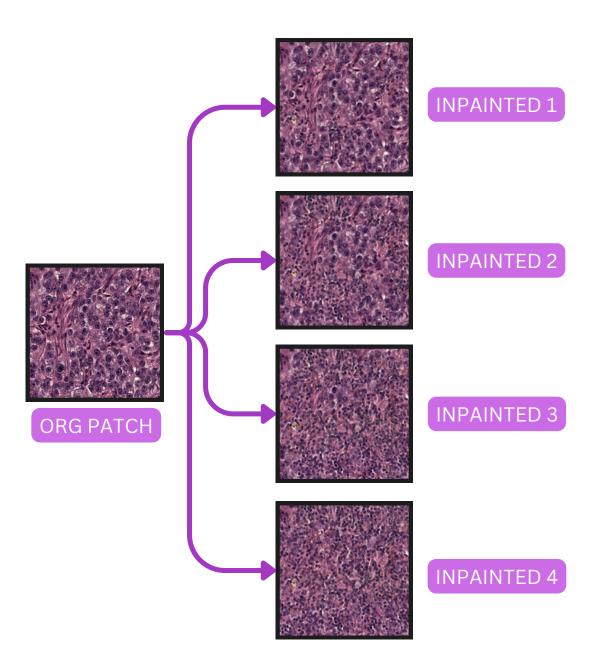
• LPIPS [12]

$$ext{LPIPS}(x,\hat{x}) = \sum_{l} rac{1}{H_{l}W_{l}} \sum_{h=1}^{H_{l}} \sum_{w=1}^{W_{l}} \|\mathbf{w}_{l} \odot (\phi_{l}(x)_{hw} - \phi_{l}(\hat{x})_{hw})\|_{2}^{2},$$

Alexnet



Occlusion Strategy	\mathbf{Mask}_1	Mask ₂	$Mask_3$	\mathbf{Mask}_4
Blackening	0.1106	0.2280	0.3693	0.5567
Histogram	0.0841	0.1844	0.3082	0.4621
Mean	0.0796	0.1776	0.2997	0.4520
NLI	0.0781	0.1769	0.2999	0.4537
Blurring	0.0701	0.1593	0.2670	0.3895
IBO	0.0381	0.0826	0.1407	0.2180



Quantitative Evaluation

$$ext{IoU} = rac{R_{ ext{ht}} \cap R_{ ext{gt}}}{R_{ ext{ht}} \cup R_{ ext{gt}}}$$

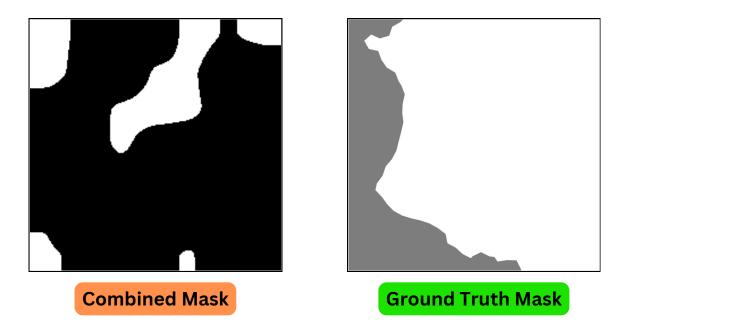
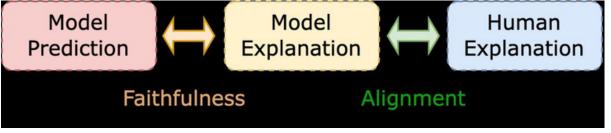


Table 2. Mean IoU scores between ground-truth and heatmaps generated by CAM-based approaches across all test samples. This ranking serves as the reference standard for evaluating various occlusion strategies.

Approach	IoU	
Full-Grad	0.6896	
Grad-CAM	0.6482	
Grad-CAM++	0.6467	
XGrad-CAM	0.6464	
Score-CAM	0.6452	
Ablation-CAM	0.6439	
Eigen-CAM	0.4257	



Results

IoU & AUC

Table 5. NLI rankings

OCCLUSION STRATEGIES RANKINGS (MEAN AUC)

71%

42%

GT RANKINGS (MEAN IOU)

Approach

Full-Grad
Grad-CAM
Grad-CAM++
XGrad-CAM
Score-CAM
Ablation-CAM
Eigen-CAM

$$IoU = rac{1}{AUC}$$

Table 3. IBO rankings

ATIC
AUC
.5335
.5991
.6014
.6058
.6363
.6707
.8622

 Table 6. Histogram rankings

Approach	AUC
Full-Grad	0.3823
Grad-CAM	0.4316
XGrad-CAM	0.4335
Ablation-CAM	0.4634
Grad-CAM++	0.4887
Score-CAM	0.5214
Eigen-CAM	0.7899

Table 4. Blurring rankings

Approach	AUC	Approach	AUC
Full-Grad	0.4769	Full-Grad	0.3788
Grad-CAM	0.5360	Grad-CAM	0.4265
XGrad-CAM	0.5360	XGrad-CAM	0.4278
Ablation-CAM	0.5651	Ablation-CA	M 0.4612
Grad-CAM++	0.5898	Grad-CAM+	+ 0.4850
Score-CAM	0.6094	Score-CAM	0.5154
Eigen-CAM	0.8511	Eigen-CAM	0.7916

Table 7. Mean rankings

Approach	AUC
Full-Grad	0.3718
XGrad-CAM	0.4224
Grad-CAM	0.4233
Ablation-CAM	0.4537
Grad-CAM++	0.4790
Score-CAM	0.5078
Eigen-CAM	0.7871

Table 8. Blackening rankings

Approach	AUC
Full-Grad	0.4857
Grad-CAM++	0.5594
Grad-CAM	0.5624
Score-CAM	0.5897
Ablation-CAM	0.6061
XGrad-CAM	0.6290
Eigen-CAM	0.8630

MARD

• Mean Absolute Rank Difference (MARD):

$$ext{MARD} = rac{1}{N} \sum_{i=1}^{N} | ext{Rank}_{ ext{GT}}(i) - ext{Rank}_{ ext{oc}}(i)|$$

	IoU	Table 7. Mean rankings		Table 8. Blackening	rankings
	Approach	Approach	AUC	Approach	AUC
	Full-Grad	Full-Grad	0.3718	Full-Grad	0.4857
	Grad-CAM	XGrad-CAM	0.4224	➤ Grad-CAM++	0.5594
	Grad-CAM++	Grad-CAM	0.4233	Grad-CAM	0.5624
	XGrad-CAM	Ablation-CAM	0.4537	Score-CAM	0.5897
	Score-CAM	➤Grad-CAM++	0.4790	Ablation-CAM	0.6061
	Ablation-CAM	Score-CAM	0.5078	XGrad-CAM	0.6290
	Eigen-CAM	Eigen-CAM	0.7871	Eigen-CAM	0.8630

Table 9. MARD values for occlusion strategies.

Occlusion Strategy	MARD Value	
Mean	1.1428	
Blackening	0.8571	
Histogram	0.8571	
NLI	0.8571	
Blurring	0.8571	
IBO	0.2857	

Conclusion

Conclusion

- 1. Better XAI Evaluation: Reduces Out-of-Distribution (OoD) samples and improves ranking accuracy.
- 2. Realistic Inpainting: Preserves tissue characteristics using DDPM.
- 3. Accurate Comparisons: Closely aligns with ground truth rankings.
- 4. Broad Potential: Framework adaptable for various medical imaging tasks.

• Cons:

- 1. High Computation: Time-intensive and costly for large datasets.
- 2. Narrow Scope: Focused on classification; limited exploration of other applications.
- 3. Efficiency Issues: Needs optimization for scalability and real-time use.

References

References

- [1] B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. CVPR, 2016.
- [2] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128(2):336–359, Oct. 2019.
- [3] S. Krishna, S. Suganthi, A. Bhavsar, J. Yesodharan, and S. Krishnamoorthy. An interpretable decision-support model for breast cancer diagnosis using histopathol ogy images. Journal of Pathology Informatics, 14:100319, 2023.
- [4] W. Samek, A. Binder, G. Montavon, S. Bach, and K.-R. Müller. Evaluating the visualization of what a deep neural network has learned, 2015.
- [5] R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, and A. Preece. Sanity checks for saliency metrics, 2019.
- [6] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, Oct. 2017.
- [7] P. Wei, Y. Zhang, L. Huang, and Y. Liu. Explainable ai: A survey on approaches and theories. IEEE Transactions on Neural Networks and Learning Systems, 2018.
- [8] Y. Rong, T. Leemann, V. Borisov, G. Kasneci, and E. Kasneci. A consistent and efficient evaluation strategy for attribution methods.

[10] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22):2199–2210, 2017.

[11] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471, 2022.

[12] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric, 2018.

Sharif University of Technology

Computer Engineering Department

THANK YOU FOR YOUR ATTENTION.